Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.26.550688

ABSTRACT

SARS-CoV-2 variants continue to emerge and cocirculate in humans and wild animals. The factors driving the emergence and replacement of novel variants and recombinants remain incompletely understood. Herein, we comprehensively characterized the competitive fitness of SARS-CoV-2 wild type (WT) and three variants of concern (VOCs), Alpha, Beta and Delta, by coinfection and serial passaging assays in different susceptible cells. Deep sequencing analyses revealed cell-specific competitive fitness: the Beta variant showed enhanced replication fitness during serial passage in Caco-2 cells, whereas the WT and Alpha variant showed elevated fitness in Vero E6 cells. Interestingly, a high level of neutralizing antibody sped up competition and completely reshaped the fitness advantages of different variants. More importantly, single clone purification identified a significant proportion of homologous recombinants that emerged during the passage history, and immune pressure reduced the frequency of recombination. Interestingly, a recombination hot region located between nucleotide sites 22995 and 28866 of the viral genomes could be identified in most of the detected recombinants. Our study not only profiled the variable competitive fitness of SARS-CoV-2 under different conditions, but also provided direct experimental evidence of homologous recombination between SARS-CoV-2 viruses, as well as a model for investigating SARS-CoV-2 recombination.


Subject(s)
Seizures , Severe Acute Respiratory Syndrome
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2093135

ABSTRACT

Up to now, there has been insufficient clinical data to support the safety and effects of vaccination on pregnancy post COVID-19 vaccination. The γδ-T cells are considered an important component in the immune system to fight against viral infection and exhibit critical roles throughout the pregnancy period. However, the immunological roles of γδ-T cells in pregnant women with the COVID-19 vaccination remain unclear. Therefore, the objective of this study is to investigate the alteration of frequency and expression pattern of activation receptors and inhibitory receptors in γδ-T cell and its subsets in peripheral blood samples collected from non-pregnant vaccinated women, vaccinated pregnant women, and unvaccinated pregnant women. Our findings indicated that the frequency of CD3+γδ-T+ cells is lower in vaccinated pregnant women than in unvaccinated pregnant women. But no significant difference was found in the frequency of CD3+γδ-T+ cells between non-pregnant vaccinated women and vaccinated pregnant women. In addition, there were no significant differences in the frequencies of CD3+γδ-T+Vδ1+T cells, CD3+γδ-T+Vδ2+T cells, CD3+γδ-T+Vδ1-Vδ2-T cells, and Vδ1+T cell/Vδ2+T cell ratio between the pregnant women with or without COVID-19 vaccination. Similar results were found after comparing non-pregnant and pregnant women who received the COVID-19 vaccine. However, there was a significant difference in the fraction of Vδ1-Vδ2-T cells in CD3+γδ-T+ cells between non-pregnant vaccinated women and vaccinated pregnant women. The frequency of NKG2D+ cells in Vδ2+T cells was not significantly different in the vaccinated pregnant women when compared to that in unvaccinated pregnant women or non-pregnant vaccinated women. But the percentage of NKG2D+ cells in Vδ1+T cells was the lowest in pregnant women after COVID-19 vaccination. Furthermore, down-regulation of NKP46 and NKP30 were found in Vδ2+T and Vδ1+T cells in the vaccinated pregnant women, respectively. After the vaccination, up-regulation of PD-1 expression in Vδ1+T cells and Vδ2+T cells indicated γδ-T cells could respond to COVID-19 vaccination and display an exhausted phenotype following activation. In conclusion, COVID-19 vaccination influences subtypes of γδ-T cells during pregnancy, but the side effects might be limited. The phenotypical changes of Vδ1+T cells and Vδ2+T cells will be a promising predictor for evaluating the clinical outcome of the COVID-19 vaccine.

3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1279130.v1

ABSTRACT

The COVID-19 pandemic has yet to be eliminated globally despite the advancement of immunization programs. Evaluation of the effects of the vaccination regimes of COVID-19 is critical for understanding the potential capacity of countermeasures and informing subsequent prioritization strategies of responses. Research and observational data provide broad support regarding the importance of effective vaccines, in contrast, debates remain on the timing and priority of booster vaccination under the assumption of resource constraint. This study aims to evaluate the effect of vaccination regimes on the trajectory of the COVID-19 pandemic from the medium-term perspective. We employ a mathematical model to infer critical epidemiological characteristics associated with COVID-19, thereafter perform simulation on the transmission dynamics of the epidemic up to 3 years. The outcomes imply that in the absence of severe variants of the pathogen, administration of booster vaccination curtails the peak size of total cases and share of severe infections at later waves. Nevertheless, it can be better off by prioritizing the primary doses to unvaccinated individuals when vaccine shortage is challenged. The effects of priority categories are consistent across a broad range of profiles. Increasing the rollout capacity (i.e., administration rate) of doses can render the reproduction number lower than one and hence contain the transmission of pandemic ultimately controlling for other factors. The timing of rollout of primary doses is pivotal in reducing the magnitude of transmission saturation. It is of importance to prioritize the administration of primary vaccination series to vulnerable individuals efficiently and thereafter increment of administration capacity when the supply of vaccine increases over time to scale down the size of an epidemic.


Subject(s)
COVID-19
4.
Biocell ; 46(4):855-871, 2022.
Article in English | ProQuest Central | ID: covidwho-1595544

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is still threatening the human life and society throughout the world. For those critically ill patients, mechanical ventilation (MV) is essential to provide life support during treatment. However, both the virus infection and MV disrupt the balance between secretion and elimination of airway mucus and lead to mucus accumulation in the lung. Postmortem examination verified that the lungs in patients died of COVID-19 are indeed filled with sticky mucus, suggesting a great need to improve airway mucus clearance in critically ill COVID-19 patients. Therefore, it may be helpful to comprehensively review the current understanding regarding the changes of biochemical and rheological features of airway mucus associated with the disease, as well as the physiological principles and algorithm to decide airway clearance techniques suitable for the critically ill COVID-19 patients. Based on these considerations, optimized strategies may be developed to eliminate the airway mucus accumulated in the airways of critically ill COVID-19 patients.

5.
Chinese Chemical Letters ; 2021.
Article in English | ScienceDirect | ID: covidwho-1272327

ABSTRACT

ABSTRACT Point-of-care nucleic acid testing (POCNAT) has played an important role in the outbreak of infectious diseases (e.g., COVID-19) over recent years. POCNAT aims to realize the rapid, simple and automatic detection of nucleic acid. Thanks to the development of manufacturing technology, electronic information technology, artificial intelligence technology, and biological information technology in recent years, the development of the POCNAT device has led to significant advancement. Instead of the normal nucleic acid detection methods used in the laboratory, some novel experimental carriers have been applied, such as chips, cartridges and papers. The application of these experimental carriers has realized the automation and integration of nucleic acid detection. The entire process of nucleic acid detection is normally divided into three steps (nucleic acid extraction, target amplification and signal detection). All of the reagents required by the process can be pre-stored on these experimental carriers, without unnecessary manual operation. Furthermore, all of the processes are carried out in this experimental carrier, with the assistance of a specific control device. Although they are complicated to manufacture and precise in design, their application provides a significant step forwards in nucleic acid detection and realizes the integration of nucleic acid detection. This technology has great potential in the field of point-of-care molecular diagnostics in the future. This paper focuses on the relevant content of these experimental carriers.

7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-86425.v1

ABSTRACT

BackgroundCoronavirus disease 2019 (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). It has been found that coronary artery disease (CAD) is a comorbid condition for COVID-19. As the risk factors of CAD, whether blood lipids levels are causally related to increasing susceptibility and severity of COVID-19 is still unknown.ObjectiveWe aim to measure the causal effects between blood lipids and COVID-19 using two-sample Mendelian Randomization (MR) methods.MethodsWe performed two-sample MR analyses to explore whether dyslipidemia, low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), triglyceride (TG) and total cholesterol (TC) were causally related to COVID-19 risk and severity. The GWAS summary data of blood lipids involving in 312571 individuals and dyslipidemia in a total of 53991 individuals were used as exposures, respectively. Two COVID-19 GWASs including 1221 infected patients and 1610 severe patients defined as respiratory failure were employed as outcomes. ResultsThe MR results showed that dyslipidemia was casually associated with the susceptibility of COVID-19 and induced 27% higher odds for COVID-19 infection (MR-IVW OR = 1.27, 95% CI: 1.08 to 1.49, p-value = 3·18 × 10-3). For blood lipids, the increasing level of TC will raise 18 % higher odds for the susceptibility of COVID-19 (MR-IVW OR = 1.18, 95% CI: 1.06 to 1.31, p-value = 3.08 × 10-3). Based on MR estimates, we further carried out gene-based analysis and found that ABO gene was associated with TC.Conclusions Dyslipidemia is casually associated with the susceptibility of COVID-19 and the blood TC level is a risk factor for the susceptibility of COVID-19. In addition, the different susceptibility of COVID-19 in specific blood group may be partly explained by the TC concentration in diverse ABO blood groups. 


Subject(s)
Infections , Dyslipidemias , Coronary Artery Disease , COVID-19 , Respiratory Insufficiency
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.07.20147926

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). It has been found that coronary artery disease (CAD) is a comorbid condition for COVID-19. As the risk factors of CAD, whether blood lipids levels are causally related to increasing susceptibility and severity of COVID-19 is still unknown. Design: We performed two-sample Mendelian Randomization (MR) analyses to explore whether dyslipidemia, low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), triglyceride (TG) and total cholesterol (TC) were causally related to COVID-19 risk and severity. The GWAS summary data of blood lipids involving in 188,578 individuals and dyslipidemia in a total of 53,991 individuals were used as exposures, respectively. Two COVID-19 GWASs including 1,221 infected patients and 1,610 severe patients defined as respiratory failure were employed as outcomes. Based on the MR estimates, we further carried out gene-based and gene-set analysis to explain the potential mechanism for causal effect. Results: The MR results showed that dyslipidemia was casually associated with the susceptibility of COVID-19 and induced 27% higher odds for COVID-19 infection (MR-IVW OR = 1.27, 95% CI: 1.08 to 1.49, p-value = 3.18 x 10-3). Moreover, the increasing level of blood TC will raise 14 % higher odds for the susceptibility of COVID-19 (MR-IVW OR = 1.14, 95% CI: 1.04 to 1.25, p-value = 5.07 x 10-3). Gene-based analysis identified that ABO gene was associated with TC and the gene-set analysis found that immune processes were involved in the risk effect of TC. Conclusions: We obtained three conclusions: 1) Dyslipidemia is casually associated with the susceptibility of COVID-19; 2) TC is a risk factor for the susceptibility of COVID-19; 3) The different susceptibility of COVID-19 in specific blood group may be partly explained by the TC concentration in diverse ABO blood groups.


Subject(s)
Coronavirus Infections , Dyslipidemias , Coronary Artery Disease , COVID-19 , Respiratory Insufficiency
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.29.178459

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related SARS-CoV-2, has been isolated from one horseshoe-bat species. Here we characterize the ability of S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, and RaTG13 to bind a range of ACE2 orthologs. We observed that the SARS-CoV-2 RBD bound human, pangolin, and horseshoe bat (R. macrotis) ACE2 more efficiently than the SARS-CoV-1 or RaTG13 RBD. Only the RaTG13 RBD bound rodent ACE2 orthologs efficiently. Five mutations drawn from ACE2 orthologs of nine Rhinolophus species enhanced human ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 by an immunoadhesin form of human ACE2 (ACE2-Fc). Two of these mutations impaired neutralization of SARS-CoV-1. An ACE2-Fc variant bearing all five mutations neutralized SARS-CoV-2 five-fold more efficiently than human ACE2-Fc. These data narrow the potential SARS-CoV-2 reservoir, suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of ACE2-Fc.

10.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-32811.v1

ABSTRACT

Objective: To compare the epidemiological and clinical characteristics of confirmed and suspected corona virus disease 2019 (COVID-19) cases via the process of “triage-screening-isolation-transfer” in the hospitals of non-epidemic areas.Methods: The general data, epidemiological history, clinical symptoms, laboratory examination, and chest computed tomography (CT) imaging characteristics of 38 patients with suspected COVID-19, admitted between January 21 and March 5, 2020, were analyzed.Results: According to the results of the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) ribonucleic acid (RNA) testing, the patients were divided into study group (RNA positive) and control group (RNA negative). Ultimately, 8 cases were RNA-positive and diagnosed as CDVID-19, and 30 cases were negative. Approximately half of the patients in the study group returned to Chongqing from Wuhan; this number was significantly larger than that of the control group (P<0.05). The number of subjects in close contact with the confirmed cases with SARS-CoV-2 RNA-positive and the incidence of aggregation was significantly larger in the study group than in the control group (both P<0.05). The clinical symptom of the study group was mainly low fever (with or without cough). The patients with decreased white blood cells (WBC) in the study group were significantly more than those in the control group (P<0.05). Both group had reduced lymphocytes (Lym) but the number of patients with increased C-reactive protein (CRP) in the study group was significantly more than that in the control group (P<0.05). There were different degrees of chest CT abnormalities in both study and control group (P > 0.05). Conclusion: The epidemiological investigations in screening for infectious diseases is crucial. The risk of infection was high from the primary epidemic area and/or in close contact with the confirmed case. The most common form of clustering occurrence was family aggregation. CDVID-19 was mainly characterized by fever and respiratory symptoms, although asymptomatic infection may also occur. Decreased WBC, decreased Lym, and increased CRP are common characteristics but can also be combined with other respiratory tract virus infections. COVID 19 screening by chest CT alone had certain limitations in non- epidemic areas.


Subject(s)
Fever , Severe Acute Respiratory Syndrome , Cough , Chest Pain , Communicable Diseases , Virus Diseases , Respiratory Tract Infections , COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.12.20096792

ABSTRACT

As of May 1, 2020, there had been over three million of officially confirmed cases of novel coronavirus (COVID-19) infections reported worldwide. The pandemic originated from a severe acute respiratory syndrome coronavirus 2 (SARSCoV-2), a virus similar to severe acute respiratory syndrome (SARS). The dynamics of the pathogen incurred the incidence of the unidentified cases that were potentially substantial in magnitude. Unparalleled extensive measures, either in terms of medical quarantine or non-medical containment, were taken to deplete the growth of infected population and thereafter settle down the outbreak. We aimed to estimate the gap in sizes and peak dates between the confirmed and unconfirmed, and how containment measures impacted the dynamic trajectory of the COVID-19 in Japan. We performed simulations and desired to provide meaningful insight for the upcoming responses to the outbreak, for which much still remained to be unknown.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
12.
Chinese Journal of Epidemiology ; (12): 489-493, 2020.
Article in Chinese | WPRIM (Western Pacific), WPRIM (Western Pacific) | ID: covidwho-6019

ABSTRACT

Objective@#To describe the epidemiological characteristics of a cluster of COVID-19 cases reported in Baodi district of Tianjin as of 18 February, 2020, which might be associated with the exposure in a local department store, and provide suggestions for prevention and control strategy development.@* Methods@#The basic characteristics, time and area distributions, clinical manifestations, epidemiological history and transmission mode of the COVID-19 cases associated with the department store exposure were analyzed.@* Results@#A total of 40 COVID-19 cases were associated with the department store exposure, accounting for 75.47% of the total confirmed cases (53 cases) reported in Baodi district. The cases were mainly at the age of 60 years or older (35.00%) and farmers (40.00%). The main clinical manifestations included fever (95.00%), cough (35.00%), and diarrhea (15.00%). The proportion of confirmed severe cases was 32.50%. The incidence curve showed that the incidence peak occurred on 31 January, 2020. Among the 40 cases, 6(15.00%) were department store employees, 19(47.50%) were customers and 15(37.50%) were close contacts (secondary cases). The first case occurred on 21 January, 2020, this case was a department store employee who had a purchasing history at whole sale markets in other provinces and cities before the onset, and 3 employees were still on duty after symptom onsets. The median of the incubation period of customer cases was 6 days, and the median of the interval between onset and medical treatment of customer cases was 7 days.@* Conclusion@#This was a cluster epidemic of COVID-19, which might be associated with the exposure in the department store. By now, the current prevention and control measures have achieved satisfied effects.

SELECTION OF CITATIONS
SEARCH DETAIL